Delayed treatment with monoclonal antibody IN-1 1 week after stroke results in recovery of function and corticorubral plasticity in adult rats.
نویسندگان
چکیده
Neuronal death due to ischemic stroke results in permanent deficits in sensory, language, and motor functions. The growth-restrictive environment of the adult central nervous system (CNS) is an obstacle to functional recovery after stroke and other CNS injuries. In this regard, Nogo-A is a potent neurite growth-inhibitory protein known to restrict neuronal plasticity in adults. Previously, we have found that treatment with monoclonal antibody (mAb) IN-1 to neutralize Nogo-A immediately after stroke enhanced motor cortico-efferent plasticity and recovery of skilled forelimb function in rats. However, immediate treatment for stroke is often not clinically feasible. Thus, the present study was undertaken to determine whether cortico-efferent plasticity and functional recovery would occur if treatment with mAb IN-1 was delayed 1 week after stroke. Adult rats were trained on a forelimb-reaching task, and the middle cerebral artery was occluded to induce focal cerebral ischemia to the forelimb sensorimotor cortex. After 1 week, animals received mAb IN-1 treatment, control antibody, or no treatment, and were tested for 9 more weeks. To assess cortico-efferent plasticity, the sensorimotor cortex opposite the stroke lesion was injected with an anterograde neuroanatomical tracer. Behavioral analysis demonstrated a recovery of skilled forelimb function, and anatomical studies revealed neuroplasticity at the level of the red nucleus in animals treated with mAb IN-1, thus demonstrating the efficacy of this treatment even if administered 1 week after stroke.
منابع مشابه
Functional recovery and neuroanatomical plasticity following middle cerebral artery occlusion and IN-1 antibody treatment in the adult rat.
Stroke is a prevalent and devastating disorder, and no treatment is currently available to restore lost neuronal function after stroke occurs. One unique therapy that may improve functional recovery after stroke is blockade of the neurite inhibitory protein Nogo-A with the monoclonal antibody IN-1, through enhancement of neuroanatomical plasticity from uninjured areas of the central nervous sys...
متن کاملFunctional recovery and enhanced corticofugal plasticity after unilateral pyramidal tract lesion and blockade of myelin-associated neurite growth inhibitors in adult rats.
After a lesion of the mature CNS, structural plasticity and functional recovery are very limited, in contrast to the developing CNS. The postnatal decrease in plasticity is correlated in time with the formation of myelin. To investigate the possible role of an important myelin-associated neurite growth inhibitor (NI-250; IN-1 antigen), one pyramidal tract of adult Lewis rats was lesioned (pyram...
متن کاملDelayed anti-nogo-a therapy improves function after chronic stroke in adult rats.
BACKGROUND AND PURPOSE we have shown that anti-Nogo-A immunotherapy to neutralize the neurite growth inhibitory protein Nogo-A results in functional improvement and enhanced plasticity after ischemic stroke in the adult rat. The present study investigated whether functional improvement and neuronal plasticity can be induced by this immunotherapy when administered to the chronic stroke-impaired ...
متن کاملRecovery and brain reorganization after stroke in adult and aged rats.
Stroke is a prevalent and devastating disorder, and no treatment is currently available to restore lost neuronal function after stroke. One unique therapy that improves recovery after stroke is neutralization of the neurite inhibitory protein Nogo-A. Here, we show, in a clinically relevant model, improved functional recovery and brain reorganization in the aged and adult rat when delayed anti-N...
متن کاملDendritic plasticity in the adult rat following middle cerebral artery occlusion and Nogo-a neutralization.
Our work has shown that following focal ischemic lesion in adult rats, neutralization of the axon growth inhibitor Nogo-A with the monoclonal antibody (mAb) IN-1 results in functional recovery. Furthermore, new axonal connections were formed from the contralesional cortex to subcortical areas corresponding to the observed functional recovery. The present study investigated whether dendritic cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 25 10 شماره
صفحات -
تاریخ انتشار 2005